794 research outputs found

    Regulatory T Cell Immunity in Atherosclerosis

    Get PDF
    Atherosclerosis is a chronic inflammatory disorder involving innate and adaptive immunity process. Effector T cell (Teff) responses promote atherosclerotic disease, whereas regulatory T cells (Tregs) have been shown to play a protective role against atherosclerosis by down-regulating inflammatory responses which include multiple mechanisms. Compelling experimental data suggest that shifting the Treg/Teff balance toward Tregs may be a possible therapeutic approach for atherosclerotic disease, although the role of Tregs in human atherosclerotic disease has not been fully elucidated. In this review, we discuss recent advances in our understanding of the roles of Tregs and Teffs in experimental atherosclerosis, as well as human coronary artery disease

    Practical aspects of Kelvin-probe force microscopy at solid/liquid interfaces in various liquid media

    Get PDF
    The distributions of surface charges or surface potentials on biological molecules and electrodes are directly related to various biological functions and ionic adsorptions, respectively. Electrostatic force microscopy and Kelvin-probe force microscopy (KFM) are useful scanning probe techniques that can map local surface charges and potentials. Here, we report the measurement and analysis of the electrostatic and capacitive forces on the cantilever tip induced by application of an alternating voltage in order to discuss the feasibility of measuring the surface charge or potential distribution at solid/liquid interfaces in various liquid media. The results presented here suggest that a nanometer-scale surface charge or potential measurement by the conventional voltage modulation techniques is only possible under ambient conditions and in a non-polar medium and is difficult in an aqueous solution. Practically, the electrostatic force versus dc voltage curve in water does not include the minimum, which is used for the surface potential compensation. This is because the cantilever oscillation induced by the electrostatic force acting on the tip apex is overwhelmed by the parasitic oscillation induced by the electrostatic force acting on the entire cantilever as well as the surface stress effect. We both experimentally and theoretically discuss the factors which cause difficulties in application of the voltage modulation techniques in the aqueous solutions and present some criteria for local surface charge and potential measurements by circumventing these problems

    Sclerite formation in the hydrothermal-vent “scaly-foot” gastropod — possible control of iron sulfide biomineralization by the animal

    Get PDF
    A gastropod from a deep-sea hydrothermal field at the Rodriguez triple junction, Indian Ocean, has scale-shaped structures, called sclerites, mineralized with iron sulfides on its foot. No other organisms are known to produce a skeleton consisting of iron sulfides. To investigate whether iron sulfide mineralization is mediated by the gastropod for the function of the sclerites, we performed a detailed physical and chemical characterization. Nanostructural characterization of the iron sulfide sclerites reveals that the iron sulfide minerals pyrite (FeS2) and greigite (Fe3S4) form with unique crystal habits inside and outside of the organic matrix, respectively. The magnetic properties of the sclerites, which are mostly consistent with those predicted from their nanostructual features, are not optimized for magnetoreception and instead support use of the magnetic minerals as structural elements. The mechanical performance of the sclerites is superior to that of other biominerals used in the vent environment for predation as well as protection from predation. These characteristics, as well as the co-occurrence of brachyuran crabs, support the inference that the mineralization of iron sulfides might be controlled by the gastropod to harden the sclerites for protection from predators. Sulfur and iron isotopic analyses indicate that sulfur and iron in the sclerites originate from hydrothermal fluids rather than from bacterial metabolites, and that iron supply is unlikely to be regulated by the gastropod for iron sulfide mineralization. We propose that the gastropod may control iron sulfide mineralization by modulating the internal concentrations of reduced sulfur compounds

    Analysis of Delayed Bleeding after Endoscopic Submucosal Dissection for Gastric Epithelial Neoplasms

    Get PDF
    Aim. Delayed bleeding after endoscopic submucosal dissection (ESD) for gastric epithelial neoplasms is a major complication. We investigated factors related to post-ESD bleeding to identify preventive measures. Methods. The study included 161 gastric epithelial neoplasms in 142 patients from June 2007 to September 2010. Post-ESD bleeding was defined as an ulcer with active bleeding or apparent exposed vessels diagnosed by an emergency endoscopy or a planned follow-up endoscopy. We analyzed associations between bleeding and the following factors: age, sex, morphology, pathology, tumor depth, ulcer presence/absence, location, size of the resected lesion, duration of the procedure, the number of times bleeding occurred during ESD, and the use of anticoagulants and/or antiplatelet drugs. Subsequently, we examined characteristics of bleeding cases. Results. Post-ESD bleeding occurred in 21 lesions. Univariate analysis of these cases showed that ulcer presence/absence (P < 0.001), middle or lower third lesions (P = 0.036), circumference (P = 0.014), and a post-ESD ulcer with an extended lesser curve (P = 0.009) were significant predictors of bleeding. Multivariate analysis showed that ulcer presence/absence (OR 9.73, 95% CI 2.28–41.53) was the only significant predictor. Conclusion. Ulcer presence/absence was considered the most significant predictor of post-ESD bleeding

    The Role of S1P2 in Atherogenesis

    Get PDF
    Aim: The bioactive lipid, sphingosine-1-phosphate (S1P), has various roles in the physiology and pathophysiology of many diseases. There are five S1P receptors; however, the role of each S1P receptor in atherogenesis is still obscure. Here we investigated the contribution of S1P receptor 2 (S1P2) to atherogenesis by using a specific S1P2 antagonist, ONO-5430514, in apolipoprotein E-deficient (Apoe−/− ) mice. Methods: Apoe−/− mice fed with a western-type diet (WTD) received ONO-5430514 (30 mg/kg/day) or vehicle. To examine the effect on atherogenesis, Sudan IV staining, histological analysis, qPCR, and vascular reactivity assay was performed. Human umbilical vein endothelial cells (HUVEC) were used for in vitro experiments. Results: WTD-fed Apoe−/− mice had significantly higher S1P2 expression in the aorta compared with wild-type mice. S1P2 antagonist treatment for 20 weeks reduced atherosclerotic lesion development (p<0.05). S1P2 antagonist treatment for 8 weeks ameliorated endothelial dysfunction (p<0.05) accompanied with significant reduction of lipid deposition, macrophage accumulation, and inflammatory molecule expression in the aorta compared with vehicle. S1P2 antagonist attenuated the phosphorylation of JNK in the abdominal aorta compared with vehicle (p<0.05). In HUVEC, S1P promoted inflammatory molecule expression such as MCP-1 and VCAM-1 (p<0.001), which was attenuated by S1P2 antagonist or a JNK inhibitor (p<0.01). S1P2 antagonist also inhibited S1P-induced JNK phosphorylation in HUVEC (p<0.05). Conclusions: Our results suggested that an S1P2 antagonist attenuates endothelial dysfunction and prevents atherogenesis. S1P2, which promotes inflammatory activation of endothelial cells, might be a therapeutic target for atherosclerosis

    Antral Somatostatin Contents and Acidity of Gastric Juice in Normal Subjects and Patients with Duodenal Ulcer

    Get PDF
    The antral somatostatin contents were investigated in biopsy specimens of the antrum from normal subjects and patients with duodenal ulcer. There was good correlation (r=0.77044) between antral somatostatin contents and maximal acidity in normal subjects, but the correlation between antral somatostatin contents and maximal acid output was not significant (r=0.254367). This result may indicate that antral somatostatin content is regulated by intragastric pH in normal subjects. On the other hands, no correlation was observed between antral somatostatin contents and acidity or acid output in patients with duodenal ulcer. Therefore the impaired regulation of acid on antral somatostatin contents could be one of the important factors in the pathogenesis of duodenal ulcer disease

    4-aminopyridyl-based lead compounds targeting CYP51 prevent spontaneous parasite relapse in a chronic model and improve cardiac pathology in an acute model of Trypanosoma cruzi infection.

    Get PDF
    BackgroundChagas disease, caused by the protozoan Trypanosoma cruzi, is the leading cause of heart failure in Latin America. The clinical treatment of Chagas disease is limited to two 60 year-old drugs, nifurtimox and benznidazole, that have variable efficacy against different strains of the parasite and may lead to severe side effects. CYP51 is an enzyme in the sterol biosynthesis pathway that has been exploited for the development of therapeutics for fungal and parasitic infections. In a target-based drug discovery program guided by x-ray crystallography, we identified the 4-aminopyridyl-based series of CYP51 inhibitors as being efficacious versus T.cruzi in vitro; two of the most potent leads, 9 and 12, have now been evaluated for toxicity and efficacy in mice.Methodology/principal findingsBoth acute and chronic animal models infected with wild type or transgenic T. cruzi strains were evaluated. There was no evidence of toxicity in the 28-day dosing study of uninfected animals, as judged by the monitoring of multiple serum and histological parameters. In two acute models of Chagas disease, 9 and 12 drastically reduced parasitemia, increased survival of mice, and prevented liver and heart injury. None of the compounds produced long term sterile cure. In the less severe acute model using the transgenic CL-Brenner strain of T.cruzi, parasitemia relapsed upon drug withdrawal. In the chronic model, parasitemia fell to a background level and, as evidenced by the bioluminescence detection of T. cruzi expressing the red-shifted luciferase marker, mice remained negative for 4 weeks after drug withdrawal. Two immunosuppression cycles with cyclophosphamide were required to re-activate the parasites. Although no sterile cure was achieved, the suppression of parasitemia in acutely infected mice resulted in drastically reduced inflammation in the heart.Conclusions/significanceThe positive outcomes achieved in the absence of sterile cure suggest that the target product profile in anti-Chagasic drug discovery should be revised in favor of safe re-administration of the medication during the lifespan of a Chagas disease patient. A medication that reduces parasite burden may halt or slow progression of cardiomyopathy and therefore improve both life expectancy and quality of life
    corecore